MARY ROSE: YOUR NOBLEST SHIPPE
Anatomy of a Tudor Warship

edited by Peter Marsden
MARY ROSE: YOUR NOBLEST SHIPPE
Anatomy of a Tudor Warship

edited by Peter Marsden

with contributions from

Douglas McElvogue, Richard Barker, Martin Bridge, Christopher Dobbs,
Richard Endor, Damian Goodburn, Allan Hall, Robert D. Hicks, Alexzandra Hildred,
David Loades, Brad Loewen and Penelope Walton Rogers

The Archaeology of the Mary Rose
Volume 2
2009
Foreword
Barry Cunliffe
Margaret Rule OBE

This year the Trust publishes the two final volumes in the series of monographs detailing the remarkable excavation of the Mary Rose. As a Trustee director these last twelve years and as Chairman of the Editorial Committee I would like to take this opportunity to acknowledge the extraordinary contribution that Margaret Rule has made to the Mary Rose venture – and to maritime archaeology in its widest sense. There can be no more appropriate place to do this than in the volume dedicated to the Noblest Shippe.

Put simply, without Margaret the ship would not now be ashore and there would be no publication such as this. Our present understanding of the Mary Rose – her materials, her construction and her sailing characteristics – is dependent on our ability to have studied her thoroughly and over time. Increasingly sophisticated methods of measuring, checking and rechecking, have allowed today’s archaeologist to get the fullest insight into this unique sixteenth century vessel to add to our intimate knowledge of her spectacular contents published in Volumes 3 and 4 of this series.

Margaret was recruited by Alexander McKee to give archaeological advice at the outset of the search for the Mary Rose which started in 1965. At the time she was working with me excavating Fishbourne Roman Palace but I could see her becoming increasingly fascinated by the rival venture which was soon to set entirely new standards in maritime archaeology. Two years later the Mary Rose Committee was formed, but it was not until 1971 that the ship was discovered. Margaret was not content to be Director of Archaeology from the comforts of the surface, so she learnt to dive in that year to be able to see for herself the huge task in hand and to direct it more closely. Such an action was typical of this lady of enormous strength of character.

What followed is described in Volume 1 of the publication, Sealed by Time. The foresight of that Committee and the dedication of all those who worked tirelessly over the next eleven years to the moment of lifting created a story that is now legendary in the annals of maritime archaeology. Margaret’s role was paramount; her enormous drive and her determination to achieve success – often against great odds – combined to ensure the dreams of those early pioneers could become a reality.

The five volumes of this publication display something of the enormous wealth of knowledge that has been forthcoming from the excavation. We have learnt much that is new and unexpected about Tudor life from this time capsule, but there can be no doubt there is a great deal more yet to be discovered from both the ship and her artefacts. Archaeologists in the generations ahead will be studying the Mary Rose and unravelling her secrets, but all of us will remember the archaeologist who began the process all those years ago. Margaret is owed a huge debt of gratitude.
Contents

List of Figures ... xi
List of Tables ... xvi
Contributors .. xvi
Acknowledgements xvii
Contributors .. xvi
List of Tables ... xvi

1. The Mary Rose and Fighting Ships, by David Loades 1

2. Salvage, Saving and Surveying the Mary Rose, by Peter Marsden
 The loss and first salvage of the Mary Rose, 1545–1549 12
 Salvage 1836–1840 14
 Rediscovery and saving the Mary Rose, 1965–1978 15
 Recording the ship 16

3. Understanding the Mary Rose, by Peter Marsden
 Principles of reconstruction 20
 Limitations of evidence 20
 Philosophy of describing and reconstructing
 the Mary Rose ... 22
 Assumptions made in reconstructing
 the Mary Rose ... 23
 Stages in describing and reconstructing
 the Mary Rose ... 23
 The plane of symmetry 25
 Features that establish the plane of
 symmetry .. 25
 Conclusion .. 31
 Buoyancy and stability 31
 Reconstructing the Mary Rose 33

4. Hull Design of the Mary Rose, by Richard Barker, Brad Loewen
 and Christopher Dobbs
 A documentary approach to Renaissance
 hull design ... 35
 The hull design of the Mary Rose 36
 The overall dimensions 36
 Timber supply .. 43
 Dendrochronology 44
 Hull construction methods 47
 Framing pattern .. 47
 Joints linking floor timbers and first futtocks 48
 Quarter-frames? 49
 Planking and hull fastenings 50
 Assembly sequence 50
 Summary ... 51
 Conclusion .. 51

5. Woodworking Aspects of the Mary Rose, by Damian Goodburn
 Species of timber used 66
 Origin of the timber used in the ship 66
 Reconstructing 'treeland' resources used by
 the sixteenth century shipwrights 67
 The size range of trees used in the ship 67
 How many trees were used to build the
 Mary Rose, her hull and decks? 68
 Reconstructing Tudor treescapes from the
 Mary Rose evidence 68
 Selected examples of parent trees used to build
 parts of the Mary Rose 69
 The overlapping weatherboarding of
 the Sterncastle .. 69
 The great oak used for the central part of
 the keelson at the mast-step 69
 The large oaks used for the Main deck
 beams .. 69
 The parent oak used for the outer hull
 planking .. 69
 Curving 'compass' and 'knee' timber 69
 Deck half-beams and pillars 70
 Orientation of the butts and tops of
 parent logs ... 71
 Timber conversion toolmarks 71
 The conversion process 71
 Methods of conversion and implied toolkits
 used to make key items of the Mary Rose 71
 Some other toolmarks 74
 Joints ... 75
 The range of joints used in the hull 75
 Wooden fastenings: treenails 77
 Iron fastenings .. 77
 Bolts, dumps and large spikes 77
 Smaller spikes and common nails 78
 Rove nails (ship’s rivets) 80

6. The Hull, by Douglas McElvogue
 The Keel .. 81
 Forward keel timber 81
 Midship keel timber 82
 Aft keel timber 82
 Scarf joints ... 82
 Keelson .. 83
 Forward timber 83
 Midship timber 83
 Mast-step ... 84
 Aft timber .. 84
 Sternpost assemblage 84
 The sternpost 84
 The apron ... 86
 Sternpost assemblage 87
 Sternpost .. 87
 False sternpost 87
12. The Upper Deck, by Peter Marsden
The Upper deck in the ship’s waist 189
Upper deck clamp .. 189
Upper deck beams 189
Knees ... 190
Carlings ... 192
Half-beams ... 192
Deck planks ... 192
Small hatches .. 193
Possible central hatches 195
Companionway hatch 195
The ‘dale’ in sectors U/M6 195
The side of the ship above the Upper deck in
the waist .. 195
Outboard standards 196
Semicircular gunports 196
The ‘blinds’ .. 197
The upper rail .. 199
Fittings .. 200
Protective cover over the waist 200
The Upper deck beneath the Sterncastle 203
Deck clamps under the Sterncastle 203
Upper deck beams under the Sterncastle 206
Hanging knees .. 206
Deck planking .. 207
The ‘dale’ in sectors U/M10 209
Companionway .. 209
The forward face of the Sterncastle at the
Upper deck .. 209
The side of the ship above the Upper deck
and below the Sterncastle 214
Swivel gun positions 214
Gunports .. 214
Fittings .. 214
Guns ... 214
Reconstruction ... 214
Correcting the distortion 214
Reconstructing the ship’s waist 0
Reconstructing the Upper deck beneath the Sterncastle .. 216
13. The Sterncastle, by Peter Marsden
Description of the Sterncastle deck 219
Deck clamp .. 219
Deck beams and knees 219
Deck planks ... 221
The side of the ship above the Sterncastle
deck .. 221
The frames .. 221
Overlapping outboard waetherboards 221
Horizontal sill A ... 223
Possible reinforcing timber B 227
Uppermost rail C ... 227
Inboard face .. 227
Loose sill .. 227
Fittings .. 227
Reconstruction ... 230
Extent of the Sterncastle deck 230
Deck beams ... 230
Possible reconstruction of the starboard
side ... 231
Furnishing of guns 231
Was there a poop deck? 231
14. Propulsion, by Peter Marsden and
Richard Endson
Masts and fittings, by Peter Marsden 242
The foremost ... 243
The main mast .. 244
The mizzen mast 246
The bonaventure mizzen mast 247
The bowsprit .. 249
Propulsion fittings 249
The rigging, by Richard Endson 251
Mast standing rigging 256
Yard running rigging 257
Sail running rigging 261
Blocks ... 264
Conclusion ... 269
15. Steering, Mooring, Anchoring and the
Ship’s Boats, by Douglas McElvogue
Steering ... 273
Rudder (83T0199) 273
Pintles and gudgeons 273
Mooring and anchoring 276
The anchors ... 276
Fenders or buoys 286
Ship’s boats ... 286
Oar (81A0243) .. 287
16. Removing Water, by Douglas McElvogue
Pumps .. 288
Main pump-ump 289
Stern pump .. 289
Spare pump tube (81A5710) 289
Pump valve .. 290
Drainage ‘dales’ 292
Midship dale, sectors U/M6 292
Aft dale, sectors U/M10 292
Possible ‘dale’, Sterncastle 292
Scuppers ... 293
Scupper leathers 293
Scupper nails 295
17. The Fighting Ship, by Alexzandra Hildred
Guns in warships 297
Changes in armaments – the inventory
of 1514 .. 298
Warfare at sea .. 303
The last battle, 1545 303
Legacy – the Mary Rose of 1545 308
The inventory of 1546 308
The Anthony Roll of 1546 and the recovered
assemblage ... 308
List of Figures

Fig. 1.1 The Mary Rose as she appears in the Anthony Roll of 1546
Fig. 1.2 The voyage from Portsmouth to London for fitting out in 1511
Fig. 1.3 The Henry Grace à Dieu as she appears in the Anthony Roll of 1546
Fig. 1.4 The exact position of the wreck of the Mary Rose
Fig. 2.1 Engraving copy of the Cowdray picture of the scene of the loss of the Mary Rose
Fig. 2.2 Deane illustrations of guns found in the Mary Rose during the nineteenth century
Fig. 2.3 Raising the Mary Rose in 1982
Fig. 2.4 Model reconstruction of the Mary Rose, made soon after the ship was raised
Fig. 2.5 Artists’ reconstructions of the Mary Rose
Fig. 2.6 View of the extent of discovered structure of the Mary Rose
Fig. 2.7 Vertical laser scan through the ship
Fig. 2.8 Starboard side elevation of the Mary Rose in the museum
Fig. 3.1 Fore-and-aft Plane of Symmetry through the ship
Fig. 3.2 Decks, cabins and sectors in the Mary Rose
Fig. 3.3 The Upper deck in the waist whose curving planks towards the bow do not follow the forward end of the starboard side
Fig. 3.4 Replacing deck planks on the Main deck.
Fig. 3.5 The keel in plan (bow right), with the ship’s centreline
Fig. 3.6 Stern elevation showing the ship’s Plane of Symmetry in the centre of the sternpost
Fig. 3.7 Sections 6 and 8, showing how the ship’s Plane of Symmetry was found
Fig. 3.8 Diagram to show that the bow of the ship is slightly twisted relative to the after half of the vessel
Fig. 3.9 Reconstructed cross-sections of the ship
Fig. 3.10 Plan of the forward end of the Main deck, showing how the starboard side has been distorted outwards
Fig. 3.11 The forces of buoyancy and gravity that make a floating vessel stable
Fig. 3.12 Flattened view reconstructing the framing of the Mary Rose
Fig. 3.13 Curves showing the derived maximum breadths of the hull at different sections
Fig. 3.14 Section 5 annotated to show measurements taken for reconstructing the master frame design
Fig. 3.15 Sections 2–10 suggested basic framing pattern
Fig. 3.16 Section 0, the sawn section at the bow
Fig. 3.17 Design curves in the hull based on the ship’s profiles
Fig. 5.1 Use of different size logs of for specific shipbuilding timbers
Fig. 5.2 Useful timbers as obtained from trees
Fig. 5.3 Fashioning knees
Fig. 5.4 Fashioning planks from a log
Fig. 5.5 Adzes used in the construction of the ship and example from London waterfront
Fig. 5.6 Some joints used in the ship
Fig. 5.7 Treenails from the Mary Rose
Fig. 5.8 Fastenings
Fig. 6.1 The keel in plan and side elevations
Fig. 6.2 The keelson
Fig. 6.3 The keelson at the mast-step, with the buttress timbers on the port side
Fig. 6.4 Stempost
Fig. 6.5 Diagram to show the components of the stempost
Fig. 6.6 a) Framing timbers of the stern; b) timbers of the stern; c) inboard view of the stern; d) sketch of the stern transom structure
Fig. 6.7 a) Outboard view of the transom stern; b) outboard view of the port side at the stern; c) timbers of the transom stern
Fig. 6.8 Measured drawing of the junction of the starboard side and the transom stern
Fig. 6.9 Views of the frames in the ship’s bottom
Fig. 6.10 a) The Hold looking forwards; b) view forward of the keelson from the mast-step
Fig. 6.11 Flattened diagram showing the framing of the upper structure
Fig. 6.12 Views of the lowest part of the ceiling in the forward part of the ship
Fig. 6.13 Gunrail with swivel gun positions
Fig. 6.14 Reconstruction of the bottom frames of the Hold showing riders in area of the mast-step
Fig. 6.15 Inboard elevation showing braces
Fig. 6.16 a) Diagonal brace, ceiling and framing of the starboard side between the Main and Orlop decks; b) outboard planking, showing treenails, with a wale at the top; c) outboard view of a gunport
Fig. 6.17 Outboard flattened view of planks
Fig. 6.18 Outboard view of the hull, with treenails and a ‘repair’ inset timber
Fig. 6.19 a) Rope-like caulking; b) method of caulking the outboard battens
Fig. 6.20 The ‘standards’ attached to the outboard face
Fig. 6.21 a) The surviving forward end of ship in the museum; b) the angled timber that formed the edge of the Forecastle on the starboard side
Fig. 6.22 The forward corner of the Sterncastle on the starboard side
Fig. 6.23 Inboard and outboard elevations of the starboard side
Fig. 7.1 Location and structure of the Hold
Fig. 7.2 Stringers, riders and stanchion positions in the Hold
Fig. 7.3 Sections with the stanchions found, and former stanchion positions
Fig. 7.4 Hold of the ship ‘as found’ and as recorded in the museum
Fig. 7.5 The Hold as straightened
Fig. 7.6 The Hold reconstructed
Fig. 7.7 Examples of stanchions used in the Hold
Fig. 7.8 Structures found in the Hold
Fig. 7.9 a) The Hold view forwards; b) view of the Hold and Orlop deck looking aft
Fig. 7.10 a) Isometric showing location of ladder and partitions as recorded b) ladder found in the Hold
Fig. 8.1 Distribution of ballast as found, slipped to the starboard side
Fig. 8.2 Reconstructed sections of the likely extent of ballast as found
Fig. 8.3 Section showing ballast
Fig 9.1 Reconstruction isometric of the galley furnaces in the Hold
Fig 9.2 a) Artist’s impression of the starboard furnace as found b) photo-mosaic underwater of the lower part of the starboard furnace
Fig. 9.3 Reconstructions of the starboard galley furnace in plan and elevation
Fig 9.4 a) Mortise holes in riders and stringers for the timber uprights of the timber cladding around the furnaces; b) impression of the timber cladding around the brick furnaces as found
Fig 9.5 Reconstruction of the timber cladding around the galley brick furnaces, and the partitioning on the Orlop deck around the opening in that deck over the furnaces
Fig 9.6 Starboard cauldron 82A4095
Fig. 9.7 Port side cauldron 81A5584
Fig. 9.8 Lead ‘flashing’ from the top of the a furnace, with a reconstruction of how it may have been placed on the brickwork
Fig 9.9 Reconstructions of the starboard galley furnace
Fig 10.1 Structure of the side of the ship between the Orlop and Main decks
Fig 10.2 Orlop deck beams as recorded in the museum
Fig 10.3 Rising knee, forward and aft view
Fig 10.4 Roman numerals on rising knees
Fig 10.5 a) Part of the Orlop deck, carlings on the starboard side; b) notched shelf with carlings in position on the starboard side; c) slots for half-beams sitting on a shelf; d) stanchion in position between a rising knee on the Orlop deck and the underside of a Main deck beam
Fig 10.6 Examples of carlings that supported the inner ends of Orlop deck half-beams
Fig 10.7 a) A half-beam shelf supporting the Orlop deck, and a diagonal brace; b) the structure of the Orlop deck planking
Fig 10.8 Orlop deck planking as recorded in the museum
Fig 10.9 The Hold, Orlop and Main decks re-assembled after having been dismantled during the excavation
Fig 10.10 A typical hatch cover, from sector O8
Fig 10.11 a) Isometric showing location of ladder and partitions on the Orlop deck b) ladder found loose in sector O8
Fig 10.12 Examples of stanchions from the Orlop deck
Fig. 10.13 Bottom of a stanchion slotted into a mortise in a rising knee on the Orlop deck
Fig 10.14 Forked timber
Fig 10.15 Reconstruction of the Orlop deck beams with the forward end distorted
Fig 10.16 The corrected (narrowed) forward end of the deck enables it to be reconstructed to its approximate original shape
Fig 10.17 Reconstructed Orlop deck plan with planking, and with hatch covers as found
Fig. 11.1 Structure of the side of the ship between the Main and Upper decks
Fig. 11.2 Isometric showing structure of the Main deck
Fig. 11.3 Main deck beams as recorded in the museum
Fig. 11.4 a) Main deck beams looking aft; b) Main deck beams looking forward; c) Main deck half-beams slotted into slots in the timber ‘deck clamp’; d) view from below of the Main deck half-beams
Fig. 11.5 a) Main deck planks and rising knees, looking aft; b) Main deck planks and rising knees, looking forward; c) drainage hole through a rising knee; d) Main deck planks looking aft
Fig. 11.6 Planking of the Main deck as recorded in the museum
Fig. 11.7 Fragments of hatch covers found loose on the Main deck
Fig. 11.8 a) Stairs from the Main to the Upper decks on the aft side of the sloping aft wall of cabin 4; b) a staircase found loose on the Main deck
Fig. 11.9 Gunports on the Main deck
Fig. 11.10 Iron bolt fittings around the inside of Main deck gunports, for the gun tackle
Fig. 11.11 a) The method of opening gunport lids from the seventeenth century onwards, was by rope through a hole in the hull just above each gunport; b) from a sixteenth century print of gunport lids being opened by ropes from the deck above
Fig. 11.12 Location and elevation drawings of Timber P18 on the side of the ship inboard forward
Fig. 11.13 Timber P18
Fig. 11.14 Timber P18
Fig. 11.15 A mortised fitting of wood found on the Main deck, with a fallen stanchion
Fig. 11.16 The location of cabins 1 ('Carpenters') and 2–3 (Barber-surgeon's) on the Main deck
Fig. 11.17 a) Outside view of the fore-and-aft inboard wall of cabin 1, including the doorway;
 b) the same with the sliding door in position
Fig. 11.18 Aft partition of cabin 1, inside view
Fig. 11.19 a) Inside view of the remains of cabin 1, with shelves that were probably used as beds;
 b) ventilation port in the hull for cabin 1
Fig. 11.20 The forward wall of cabins 2–3
Fig. 11.21 Remains of cabin 4 ('Pilot's cabin') at the forward end of the Main deck
Fig. 11.22 Main deck beams as reconstructed, but with the forward end distorted outwards
Fig. 11.23 Reconstruction of the Main deck beams
Fig. 11.24 Reconstruction of the Main deck with planks and cabins approximately as found
Fig. 11.25 Reconstruction of the Main deck with the guns in their most likely original positions
Fig. 11.26 Main deck gunport lids, starboard side
Fig. 11.27 Main deck gunport lids, port side
Fig. 12.1 Structure of the ship's side above the Upper deck
Fig. 12.2 Isometric showing location and structure of the Upper deck
Fig. 12.3 Plan of the Upper deck beams recorded in the museum
Fig. 12.4 a) Upper deck half-beams looking forwards;
 b) view aft of the Upper deck beams in the waist;
 c) hanging knee and the Upper deck 'clamp' timber that supported the deck beams in the waist at the surviving top of the ship's side
Fig. 12.5 a) Hanging knees and Upper deck clamp at the surviving top of the ship's side in the waist. View aft, with the Main deck below;
 b) an angled hanging knee of the Upper deck
Fig. 12.6 Plan of the Upper deck planks recorded in the museum
Fig. 12.7 a) View forward of the Upper deck planking and small hatches in the ship's waist;
 b) view aft of the Upper deck
Fig. 12.8 a) Construction of the small hatches;
 b) hatch on the Upper deck in the ship's waist as recorded underwater
Fig. 12.9 Plan of the Upper deck as recorded underwater
Fig. 12.10 Views of the midship's drainage 'dale' below the forward face of the Sterncastle
Fig. 12.11 Reconstruction outboard view of the upper part of the ship's side in the waist showing blinds
Fig. 12.12 Reconstruction outboard view of the upper part of the ship's side in the waist
Fig. 12.13 Blinds found in the ship
Fig. 12.14 Section through the ship's starboard side above the Upper deck in the waist
Fig. 12.15 Drawing, made during the excavation, of part of the 'upper rail' at the ship's waist
Fig. 12.16 Short 'joists' found above the Upper deck in the waist
Fig. 12.17 Long 'joists' found above the Upper deck in the waist
Fig. 12.18 Suggested reconstruction of part of the roof structure over the starboard side of the ship in the waist
Fig. 12.19 T-shaped timber structure that probably supported the inboard end of the roof over the waist
Fig. 12.20 Possible fragments of anti-boarding netting and the waist of the Mary Rose shown in the Anthony Roll
Fig. 12.21 View forward and aft showing the step up in the Upper deck from the Sterncastle
Fig. 12.22 a) Hanging knees that supported the Upper deck below the Sterncastle; b) the afterdale in U10 with knee and lower part of gunport
Fig. 12.23 Ladder found loose on the Upper deck
Fig. 12.24 Fore-and-aft section through the forward face of the Sterncastle at the Upper deck
Fig. 12.25 Excavation drawings of the surviving structure of the forward corner of the Sterncastle
Fig. 12.26 Sill timber from forward face of the Sterncastle
Fig. 12.27 a) The surviving remains and; b) surviving timbers of the forward elevation of the Sterncastle
Fig. 12.28 The 'bitt' from the forward face of the Sterncastle
Fig. 12.29 Upper deck gunport and gunrail in stern with swivel gun positions
Fig. 12.30 Reconstruction of the Upper deck beams
Fig. 12.31 Reconstruction plan of the Upper deck planking, with conjectured positions of masts and hatches in the waist
Fig. 12.32 Conjectured location of guns on the Upper deck
Fig. 13.1 Structure of side of the ship above the Castle deck
Fig. 13.2 Isometric showing location of the Castle deck
Fig. 13.3 Remains of the Sterncastle deck beams in the museum
Fig. 13.4 a) Rebates for deck beams in the Sterncastle deck clamp, and a hanging knee; b) forward end of the Sterncastle deck; c) the Sterncastle deck further aft
Fig. 13.5 Position of a restored deck plank recorded in the museum
Fig. 13.6 Forward face of the Sterncastle with the position of the Sterncastle deck
Fig. 13.7 Suggested reconstruction by the excavators of the side of the Sterncastle above the deck
Fig. 13.8 Structure of the starboard side of the Sterncastle
Fig. 13.9 a) Lower timber or wale in the starboard side above the Sterncastle deck; b) forward end of the lower timber with holes for swivel guns
Fig. 13.10 Loose sill 81T0163 with possible frame holes
Fig. 13.11 Reconstruction of sill 81T0163
Fig. 13.12 Part reconstruction of the Sterncastle deck beams
Fig. 13.13 Partial reconstruction of the Sterncastle planks
Fig. 13.14 Location of decorative panels as found
Fig. 13.15 Decorative panels
Fig. 14.1 Simplified drawing of the Mary Rose’s rigging as it appears in the Anthony Roll
Fig. 14.2 Possible mast partner deck planks shaped to fit around the fore mast and main mast at deck level
Fig. 14.3 Inboard elevation showing position of the mast-step
Fig. 14.4 Detail of the mast-step
Fig. 14.5 Perspective view of the surviving remains of the ship’s rigging beside the Sterncastle
Fig. 14.6 View of rigging and other fittings found below the Sterncastle on the starboard side
Fig. 14.7 Fighting top 81A1569
Fig. 14.8 Divelog 81/A/89, underwater sketch of sail parts with cringle O2
Fig. 14.9 Windlass drum 81T0406
Fig. 14.10 Discovered channel, chains and deadeyes for the standing rigging of the main and mizen masts
Fig. 14.11 Reconstructed masts and standing rigging
Fig. 14.12 Reconstructed running rigging
Fig. 14.13 Parrel 81A2437 as found and as recorded underwater (Divelog 81/A/29)
Fig. 14.14 Parrel fragments 81A2437
Fig. 14.15 Reconstructed sails
Fig. 14.16 Possible rigging fitting for sheet on the forward side of the Sterncastle
Fig. 14.17 Block 79A0515
Fig. 14.18 Block 80A0958
Fig. 14.19 Block 80A1188
Fig. 14.20 Block 81A3018
Fig. 14.21 Blocks 81A0952 and 81A0888
Fig. 14.22 Sheave 81A1142
Fig. 14.23 Sheave 81A0899
Fig. 14.24 Deadeye 81A1652
Fig. 14.25 Lower deadeye and chain 82A3746 found attached to starboard side of the hull
Fig. 14.26 An upper deadeye from the ship’s starboard side
Fig. 15.1 Anthony Roll picture of the Mary Rose stern with rudder
Fig. 15.2 Remains of the rudder reconstructed onto the ship’s stern
Fig. 15.3 Remains of the rudder
Fig. 15.4 a) Remains of a wrought iron pindle, formerly attached to the rudder, and a gudgeon, formerly attached to the sternpost; b) reconstruction
Fig. 15.5 The tiller
Fig. 15.6 The ship’s anchoring fittings shown on the Anthony Roll
Fig. 15.7 Anchors
Fig. 15.8 Anchors and possible anchor stocks
Fig. 15.9 Anatomy of an anchor
Fig. 15.10 Distribution of anchors and related items
Fig. 15.11 Portion of mooring cable and method of twisting
Fig. 15.12 Underwater sketch of coil of rope in sector O3
Fig. 15.13 Underwater sketches of rope in sector O5
Fig. 15.14 Possible wooden fenders
Fig. 15.15 Detail of the ship’s boat from the Anthony Roll
Fig. 15.16 Oar blade 81A0243
Fig. 16.1 Distribution of features relating to the removal of water from the ship
Fig. 16.2 The main pump-sump and well beside the main mast-step the Hold
Fig. 16.3 Underwater sketch of the spare pump found on the Orlop deck
Fig. 16.4 Parts of the spare pump
Fig. 16.5 The midships dale in U6
Fig. 16.6 a) Location of the midships dale; b) outboard end of the afterdale in the starboard side
Fig. 16.7 Diagrammatic view of a scupper on the Main deck
Fig. 16.8 a) inboard view of the end of a supper on the Main deck; b) outboard end of a scupper with the remains of a leather sleeve
Fig. 16.9 Scupper leather 87A0066
Fig. 16.10 Scupper leather 81A5954
Fig. 17.1 Anthony Roll picture of the Mary Rose showing gunports
Fig. 17.2 Internal elevation showing braces, gunports and swivel blocked holes
Fig. 17.3 The Cowdray Engraving showing the sinking of the Mary Rose
Fig. 17.4 GIS version of the same view of the fleets as shown in the Cowdray Engraving
Fig. 17.5 As Fig. 17.3, with range rings for shore emplacements, the French galleys and the English ships the Mary Rose and the Henry (Grace à Dieu)
Fig. 17.6 As Fig. 17.3, showing possible track of the Mary Rose
Fig. 17.7 The distribution of guns on the ship
Fig. 17.8 a) Reconstruction of bronze gun on carriage; b) demi culverin 79A1232 in position on the Castle deck
Fig. 17.9 Port pieces
Fig. 17.10 Sling 81A0645 and reconstruction of 81A2604 on its carriage
List of Tables

Table 4.1 Room of Mary Rose floor timbers (m)
Table 4.2 Distribution pattern of joints
Table 4.3 Occurrence of preserved port-side scarfs and the side of the floor timber (forward or aft) where the futtock’s lapping portion is found
Table 8.1 Calculations of the tonnage estimates for ballast in each sector
Table 8.2 Calculation of weight of furnace
Table 9.1 Quantity and distribution of logs
Table 9.2 Account list for: ‘stuff [for] mending the kitchens’
Table 9.3 Galley-related items in the inventory of 1514
Table 10.1 Orlop deck beams
Table 11.1 Guns from the Main deck
Table 12.1 Blinds
Table 14.1 Deadeyes for the bonaventure and foremasts
Table 14.2 In situ deadeyes and chains
Table 14.3 Lower mizzen deadeyes
Table 17.1 1514: guns of brass
Table 17.2 1514: guns of iron
Table 17.3 1514: hand-held weapons and projectiles
Table 17.4 1540: guns of brass
Table 17.5 1540: guns of iron
Table 17.6 Anti-ship/personnel weapons
Table 17.7 1546: guns of brass
Table 17.8 1546: guns of iron
Table 17.9 1546: carriage-mounted guns
Table 17.10 1546: ship-supported guns
Table 17.11 1546: hand-held weapons
Table 17.12 1546: Main deck guns
Table 17.13 1546: Upper deck guns
Table 17.14 1546: Castle deck guns
Table 19.1 Details of dates and ring counts for Mary Rose timbers

Table appendix 2.1 Caulking samples containing animal fibres
Table appendix 2.2 Caulking samples containing plant fibres
Table appendix 2.3 Caulking samples containing both plant and animal fibres

Contributors

Richard Barker, 24 Gordon Road, Borrowash, Derby DE72 3JX, UK
Martin Bridge, Institute of Archaeology, 31–34 Gordon Square, London WC1H 0PY, UK
Peter Crossman, Mary Rose Trust, College Road, HM Naval Base, Portsmouth PO1 3LX, UK
Christopher Dobbs, Mary Rose Trust, College Road, HM Naval Base, Portsmouth PO1 3LX, UK
Richard Endsor, 19 Highworth Close, High Wycombe HP13 7PJ, UK
Damian Goodburn, Ancient woodworking specialist, The Cottage, Tonge Corner, Sittingbourne, ME9 9BA, UK
Allan Hall, Department of Archaeology, University of York, King’s Manor, York YO1 7EP, UK
Robert D. Hicks, College of Physicians of Philadelphia, 19 South 22nd Street, Philadelphia, Pennsylvania 19103, USA
Alexzandra Hildred, Mary Rose Trust, College Road, HM Naval Base, Portsmouth PO1 3LX, UK
David Loades, The Cottage, Priory Land, Burford OX18 4SG, UK
Brad Loewen, Department of Anthropology, Université de Montréal C.P. 6128, succursale Centre-Ville, Montreal QC H3, Canada
Douglas McElvogue
Peter Marsden, Shipwreck & Coastal Heritage Centre, Rock-a-Nore Road, Hastings TN34 3DW, UK
Penelope Walton Rogers, The Anglo-Saxon Laboratory, Marketing House, 8 Bootham Terrace, York YO30 7DH, UK
Acknowledgements

This publication is based on the enormous amount of work on the Mary Rose by numerous people who excavated and recorded the ship and the finds under the leadership of Margaret Rule. Though they are too many to mention by name, it is their collective successes that have enabled us to prepare this interim publication.

Of those who were directly involved in the preparation of this book, thanks are due to the many authors who have undertaken research and written their chapters. These are Richard Barker, Martin Bridge, Christopher Dobbs, Richard Endor, Damian Goodburn, Allan Hall, Robert D. Hicks, Alexzandra Hildred, David Loades, Brad Loewen, Douglas McElvogue and Penelope Walton Rogers.

A special debt is owed to Dr Julie Gardiner of Wessex Archaeology, not only as Series Editor for the publication programme and a solver of numerous problems over many years, but also because she arranged the laser scan of the ship in the museum. Apart from the publications this scan was the single most important recent addition to the archaeological archive. It enabled Douglas McElvogue to undertake his detailed record of the ship’s structure, compiled from numerous short visits to the vessel, and made it possible for him to prepare the first complete series of elevations, sections and plans of the ship as it exists in the museum. With dedicated determination he worked in dark, wet and slippery conditions as the conservation processes continued around him.

Most of the illustrations are by Peter Crossman who strived hard to keep up with the schedules on several volumes at once. Others are by Debbie Fulford. Drawings of the ship are mostly by Douglas McElvogue, and these enabled me to attempt the ship reconstruction drawings. I am grateful to Andrew Elkerton who was always on hand to supply data from the archive.

In the background was a team of people whose support was vital to the success of the work. Two successive Chief Executives of the Mary Rose Trust, Charles Payton and John Lippiett, have taken crucial decisions to facilitate our work, as has the Editorial Board, Barry Cunliffe, Sean McGrail and Brian Lavery. The debt to Sean McGrail is incalculable. He read every draft and advised on every chapter and illustration as they were being prepared, with the result that the publication is far better than it would otherwise have been. Thanks are also due to Christopher Dobbs who commented on various chapters, and to Ole Crumlin Pedersen who advised as an external referee.

The faith and support in this publication project by the Heritage Lottery Fund that financed much of the work, through their Project Monitor, Gill Andrews, has been enormously appreciated. Similarly, the overall project management by Wessex Archaeology through Julie Gardiner, with the financial management by Charlotte Matthews, has enabled the publication goal to be achieved.

The sampling programme for dendrochronology by Christopher Dobbs and Martin Bridge was carried out in conjunction with Stuart Vine, Senior Ship Archaeologist at the Mary Rose Trust. Adrian Palmer, research student at London Guildhall University also assisted for part of the study. The sampling would not have been possible without the extensive help of the whole team at the Mary Rose Ship Hall and the analysis was done at the Department of Geography, London Guildhall University where Dr Bridge was working during the early part of this study. Margaret Rule is thanked for her support during the programme as are dendrochronological colleagues for making their unpublished chronologies available.

Robert Hicks is grateful to Lt Commander D.W. Waters, former Head, Navigation and Astronomy, National Maritime Museum, Greenwich, and later Deputy Director, for his views on the interpretation of the Mary Rose navigation artefacts, and to Alan Stimson, former Curator of Navigation, National Maritime Museum, and Willem F.J. Mörzer Bruyns, Senior Curator (Navigation), Nederlands Scheepvaartmuseum, Amsterdam, for their generous critiques of a draft of chapter 18. Willem Mörzer Bruyns is thanked also for alerting the author to relevant Dutch and German sources. The author also wishes to thank Dr Kathleen R.D. Sands for editing the draft.
Abstract

The Preface stresses that this volume is an interim statement of what was found of the English warship Mary Rose. She was sunk in battle against the French navy on 19 July 1545, and was raised by archaeologists and engineers in 1982.

Chapter 1, The Mary Rose and fighting ships by David Loades, places the Mary Rose in the context of the history of warships from Greek and Roman times to the sixteenth century. Of special importance is the significant amount of historical documentation about the ship that has been found, and the fact that the ship reflects the increasing use of heavy guns. She was built under the orders of King Henry VIII at Portsmouth in 1509–1511 and soon took part in naval battles against the French in 1512 and 1513. Thereafter she was hardly used but was kept under repair between 1524 and 1530. She was originally designed for medieval hand to hand fighting, but during the 1530s she was modernised to carry a heavier armament.

Chapter 2, Salvage, saving and surveying the Mary Rose by Peter Marsden, discusses the efforts to salvage the ship between 1545 and 1549. At first the Admiralty hoped to raise the ship, but found that this was not possible and only managed to raise some of her guns. Much of the salvage was undertaken by a Venetian who employed a diving team led by a west African diver. The wreck was rediscovered in 1836 and continued to be salvaged by one of the Deane brothers until 1840. More guns were found and were stored by the Admiralty at Woolwich, but other items were sold at Portsmouth. In 1965 a search for the wreck was started by Alexander McKee, and in 1970 his team located a gun and a loose plank. Next year Percy Ackland found the side of the ship exposed in the sea-bed, after which the full excavation commenced. The Mary Rose Trust was formed, and in 1982 the ship was raised for preservation in a new museum in Portsmouth Dockyard. It was here that the ship began to be recorded, though this had to fit in with the conservation process. After 2000 the Mary Rose Trust received grants to complete and publish five volumes describing the ship and her contents, and also her conservation. Facilitating this was the laser scan of the ship in 2002, with the detailed recording of parts of the ship by Douglas McElvogue that have enabled reconstructions of the vessel to be made.

Chapter 3, Understanding the Mary Rose by Peter Marsden, sets out the principles by which the ship has been studied, leading to conclusions on how she was built, used, repaired and modified. Distortions to the hull were identified, and obvious missing timbers reconstructed. Crucial to reconstructing the ship was identifying her ‘plane of symmetry’ whereby the missing port side was the mirror image of the surviving starboard side. This enabled the Hold and decks to be reconstructed and furnished. Although the bow is missing the discovery of the collapsed stempost has enabled a fairly accurate reconstruction of the bow to be completed.

Chapter 4, Hull design of the Mary Rose by Richard Barker, Brad Loewen and Christopher Dobbs, considers the ship as the oldest English ‘document’ on sixteenth century hull design and enables it to be compared with fifteenth century Italian texts on the subject. According to Renaissance methods, all frames were shaped according to a system of arcs with identical radii, and this influenced timber supply and frame style. The authors found that the frames of the Mary Rose followed a system of arcs, but they concluded that it was unlikely that the Italians influenced the ship's builders. The authors believed that although there was no meaningful pattern of framing elements in the ship, the frames do fall into three groups: at the bottom of the ship, at the turn of the bilge, and at the sides. They conclude that the ship reflects a mature design process, but a youthful carvel shipbuilding industry that was less than 50 or so years old when the Mary Rose was built. It had superseded the clinker shipbuilding tradition that had existed in northern Europe for about 1000 years. The shipwright responsible for building the Mary Rose had mastered the proportional conception of the hull’s overall dimensions, conceived its master frame according to tangent arcs, and had control of the complex geometry of design. The sophisticated design methods invite questions as to their origin. Was it already in use in England during the fifteenth century, or did it come from abroad?

Chapter 5, Woodworking aspects of the Mary Rose by Damian Goodburn, describes the species of timber used, mostly oak, but with some elm used in parts of the keel and on the Orlop deck. There is also a little pine, spruce and poplar used in repairs. The sizes of trees and the weights of some timbers are discussed. The construction methods of selected parts of the ship are described, including the weatherboarding in the Sterncastle, the keelson and mast-step, the deck beams, outer hull planking, knees, frames, riders, half-beams and pillars. Toolmarks and the tools that they represent are described, as well as carpenters’ marks, scarfs and joints, and treenails and iron fastenings.

Chapter 6, The hull by Douglas McElvogue, is a description of the timbers that make up the ship’s hull. They include the keel (of three timbers, elm at the ends and oak in the middle), keelson, stempost assemblage, sternpost, ‘deadwood’ (strictly not deadwood, but vertical frame ends), transom stern, frames, ceiling, stringers, gunwale, riders, brace timbers, outer hull planking, wales, caulking, seam battens, possible traces of ‘white stuff’ (a protective coating over the hull below.
the waterline), standards at the ship’s waist, traces of the forecastle, the channel (the rigging shelf) and the ‘rigging rail’.

Chapter 7, The Hold by Peter Marsden, describes the discovered structure of the Hold, the keelson, stringers, ceiling planks, Orlop deck clamp timber, riders and the lower ends of the side brace timbers. The plan of the Hold is reconstructed after the forward distortion has been corrected and the plane of symmetry identified. Missing structure, indicated by fixings, is reconstructed, including some stanchions, partitions, the main mast and its likely diameter, the two bilge pumps indicated by two pump wells, and the absence of fixed companionways.

Chapter 8, The ballast by Christopher Dobbs, was gravel that contained some sea shells and so was most likely quarried from a beach in the Portsmouth area. The ballast, originally at the bottom of the Hold, had been displaced to starboard in the sinking. Its volume, roughly indicated by its occurrence in the excavated sections across the ship, and density gives it a weight of approximately 102 metric tonnes.

Chapter 9, The galley by Christopher Dobbs, describes the construction and use of the two brick ovens or ‘furnaces’ in the Hold, of which only part of the starboard one had survived. Each had a copper alloy cauldron over its firebox, that on the starboard side held a maximum of 600 litres and that on the port side held about 300 litres. The brick furnaces were surrounded on three sides by timber cladding, and there were traces of a lead lip to the brickwork. Associated cooking utensils were found, including a copper alloy kettle and cooking pot. The furnaces were heated by fuel logs, of which 776 were found in the ship. A reconstruction of one of the furnaces shows that starting at 20° C it took 5 hours to heat 400 litres of contents, and also that the oven was more efficient without side flues from the firebox. Forward of the furnaces was a working area for the cooks.

Chapter 10, The Orlop deck by Peter Marsden, is supported on main beams spaced at roughly 3m intervals. These are held by rising knees some of which are inscribed with the numbers II, III, IV, VII and VIII. By chance these are the same as the beam numbers given by the excavators and show that only one is missing from the bow. Other elements of the Orlop deck are described, including half-beams and their shelves, carlings, deck planks, central hatches and their covers (but no trace in the ship of hatch gratings), partitions, stanchions and a curious large forked timber. There were no companionway hatches, so access to the Hold was by ladder through the central hatches, such a ladder being found in position at the galley. The Orlop deck was reconstructed after the distortion at its forward end was corrected. The partitions and stanchions showed that the deck had ten compartments whose contents show that they were used to store gun equipment, rigging including a spare sail, fuel logs for the galley furnaces, a coil of anchor cable, and archery and lighting equipment.

Chapter 11, The Main deck by Peter Marsden, has a similar structure to the Orlop deck, with a timber deck clamp, beams, half-beams, rising and lodging knees, half-beam shelves, carlings and deck planks. Along the centreline were hatches with parts of hatch covers, but no indication of gratings. In the starboard side are scuppers, gunports with their lids and iron fittings for gun tackle. An horizontal timber, P18, has certain fittings and lies beside a round hole through the hull suggesting that it was a pin rail for the rigging or an anchor cable. The entire deck was reconstructed by drawing the plane of symmetry, which allowed the guns and their carriages to be drawn in position. How the gunports were opened and closed is discussed, and it is concluded that they were opened by men lifting ropes outboard from the Upper deck of the waist. Such a method is shown on a carrack by the sixteenth century artist Stradanus.

Chapter 12, The Upper deck by Peter Marsden, describes the two distinctly different areas of deck construction: in the waist and below the Sterncastle. There is a step down of 270mm from one to the other, at the base of which was a timber drainage ‘dale’ to discharge water from the deck over the side. The structure of the deck is described, that in the waist having heavier timbering of clamp, beams and half-beams, hanging knees, carlings and deck planks. There are also four small hatches in the Upper deck above the guns on the Main deck, possibly for communication, and an access hatch beside the Sterncastle. The side of the ship in the waist was found almost complete and stands about 2.2m high. In it are semicircular gunports, and above that ‘blinds’ or removable shields. Outboard are upright ‘standards’ to support the structure. One iron gun was found at its gunport. The ‘top rail’ of the side had rebates presumably for the roof joists that supported a protective cover over the waist. This crucial timber is missing at present, and needs to be recorded. Inboard was found a T-shaped timber structure, probably to support the inboard end of the cover. Fragments of anti-boarding netting were found scattered over the waist. Beneath the Sterncastle the deck is of much lighter construction, with beams supported by a deck clamp and hanging knees. There is also a timber drainage dale, and loose pieces of a staircase. Part of the forward face of the Sterncastle has survived, with overlapping planks beneath two windows. Also, there is an upright post or ‘bitt’ worn by rope. It is not clear how access was gained from the waist to the deck beneath the Sterncastle. Two square gunports are in the ship’s side beneath the Sterncastle, with one gun found in position.

Chapter 13, The Sterncastle by Peter Marsden, describes the overlapping weatherboarding, timber rails with swivel gun positions, and the outboard upright standards of the starboard side. Slots for decorative panels were recorded. Only the starboard edge of the Sterncastle deck remains, though more has yet to be recorded. A few ends of deck beams survive in the deck clamp on the starboard side, which, together with other
rebates in the deck clamp reflect the positions of more beams. This enables the forward part of the deck to be reconstructed. Also, there are parts of several hanging knees to support the beams. A small portion of deck planking remains with a forward facing gun in position.

Chapter 14, Propulsion by Peter Marsden and Richard Endson, describes the considerable evidence for the ship’s propulsion to be derived from the 1514 inventory of the ship, from the image of the ship on the *Anthony Roll* of 1546, and from the archaeological remains. The ship had four upright masts, the fore mast, main mast, mizzen mast and bonaventure mast, and a bowsprit. The step of the main mast was found, and at the side of the ship were deadeyes for the shrouds that formerly supported that mast. Smaller deadeyes for the shrouds of the mizzen mast were also found and show where that mast was situated. No trace of the other two masts or of the bowsprit was found. Other than that there was found a mast top, a sail and a windlass. The standing and running rigging is reconstructed, with clues from pulley blocks, a parrel and other deadeyes, as well as from contemporary sources. Much more work is required on this subject.

Chapter 15, Steering, mooring, anchoring and the ship’s boats by Douglas M-Elvogue, discusses the limited evidence for these aspects of the ship. The incomplete ship’s rudder is described, but there was no evidence to show how the ship was steered, though a tiller was found. Several iron anchors and their wooden stocks are described, and also the coils of mooring cables found in various parts of the ship. Wooden fenders or mooring buoys were also found. The ship’s boats are referred to based on the documentary records, but their only trace was one oar.

Chapter 16, Removing water by Douglas M-Elvogue, describes the important evidence for removing water. The main pump-well lay beside the step for the main mast, and a second well appears to have existed further aft at an early stage in the history of the ship. A spare pump tube 8.22m long was found with its valve fittings. Two drainage dales existed on the Upper deck. The scuppers were found on the Main deck amidships, with leather sleeves that were used as valves.

Chapter 17, The fighting ship by Alexzandra Hildred, describes the considerable evidence for the *Mary Rose* as a warship. Inventories of her weapons from 1514 to 1546 are important, and link up with the discovered remains of guns, bows and arrows, and pikes and bills. There is clear evidence that when first built she mainly had anti-personnel guns, but by 1545 she had more and heavier guns. Battle tactics at sea are discussed, and the likely movement of ships in the final battle. Explanations of why the ship sank, either by rashness or negligence, are considered, and it seems that various difficulties combined to bring about the disaster of 1545 (Chap. 21). A comparison is made between the ship’s guns listed in 1545–6, and those actually found and where they were positioned, as well as the handguns, gunpowder and shot. The role of the hand weapons is discussed, as is the purpose of the grapnel hanging from the bowsprit.

Chapter 18, Navigating the Mary Rose by Robert D. Hicks, considers the voyage in which she was sunk and the place of the navigational equipment found in her. The compasses, sandglasses, sounding leads, dividers, log reel, probable chart storage items, and a slate protractor form the earliest dated assemblage of navigational tools found in Europe. Whereas some reflect coastal voyaging, others reflect navigation based upon mathematics and an understanding of astronomy and cartography. The *Mary Rose* was lost at a pivotal time in the development of navigation.

Chapter 19, Construction and refits: tree-ring dating the Mary Rose by Christopher Dobbs and Martin Bridge, describes the tree-ring dating of some of the ship’s oak timbers. 108 timbers were sampled, of which 41 gave dates. These showed that many timbers, such as some riders and diagonal braces, and the stern transom knees, had been added after the ship was built, and that the vessel had been rebuilt, probably in the 1530s. Other timbers were from the ship’s original construction, including three of the main deck beams, and possibly some of the overlapping planks in the Sterncastle. One frame at the waterline shows that the ship was being repaired as late as the 1540s. The tree-rings suggest that the original timbers may have been from central southern England, and that the repair timbers were perhaps from the Medway region in Kent.

Chapter 20, Reconstruction of the Mary Rose: her design and use by Peter Marsden, brings together the evidence for what the ship was like in 1545 and what she may have been like when launched in 1511. The only contemporary picture of the ship is of her in 1545, in the *Anthony Roll*, which shows that she was a carrack. Images of other carracks around 1500 indicate that *Mary Rose* probably had a sharp stern below the waterline, and that later she was rebuilt with a flat transom stern. This view is also suggested by the tree-ring dates of the knee timbers that support the transom. When originally built she had four masts and a bowsprit, and appears to have had the same decks as existed in 1545, though they did not have fixed names. In an inventory of the ship in 1514 she had 78 guns, most of which were anti-personnel weapons for close combat. When she was rebuilt, probably around 1535–6, heavy guns were placed on her Main deck with new gunports cut in her sides. The gunport lids were probably opened by men manipulating ropes from the Upper deck. By 1545 she had about 65 anti-personnel guns and 26 anti-ship guns. This extra weight of guns, and the proximity of the Main deck gunports to the waterline was a dangerous situation. Access around the ship is poorly understood, for although there were some fixed companionways, most access was apparently by movable ladders through the central hatches of the decks. When she sank there were clusters of men, represented by ‘fairly complete skeletons’, in the galley, in the main storage area of the Hold, in the archery store on the
Orlop deck, around a gun on the Main deck, and on the Upper deck beneath the Sterncastle. These possibly represented cooks, seamen, archers, a gun crew and soldiers and archers, a view also suggested by differences in their clothing.

Chapter 21, The loss of the Mary Rose 1545 by Peter Marsden, describes the loss of the ship soon after being in action against an enemy vessel, and whilst she was turning to re-engage the enemy. Her main guns were found loaded, so the sinking took place after reloading. One gun, a port-piece on the Upper deck in the waist, was still being loaded when she sank for the shot was in the barrel but the cartridge chamber was not in position. Possibly with a range of roughly 430m, the gun suggests how close the Mary Rose was to the enemy. Judging from the location of fairly complete skeletons, the archers and soldiers were ready for action on the Upper deck beneath the Sterncastle, whilst others were collecting archery equipment from a store on the Orlop deck. It was the rebuild of the ship in the 1530s that caused the vessel to be unstable, with the insertion of new gunports on the Main deck close to the waterline and the extra weight of new guns and additional ship’s structure. Added to this was the slow response to closing the gunport lids which, judging from the teeth studies that showed that many of the crew were foreigners, suggests that they may not have understood orders. All of this apparently contributed to the disaster. Much later, Sir Walter Raleigh is reported as saying that he believed that the waterline was only sixteen inches below the gunports. The sinking of Mary Rose, therefore, was mainly due to her having been modified too far, and the anti-boarding netting compounded the problems by stopping most of the crew from swimming to safety. Only 40 of her crew survived. Following her loss, the old fashioned carrack was phased out and replaced by the galleon, a sleeker warship designed around guns and without high castles.

Chapter 22, Future research by Peter Marsden, urges the need for a research plan driven by questions so as to reconstruct what the ship was like both in 1545 and when she was first built. An essential element is to compile a complete transcript of all known historical documents concerning the Mary Rose and related warships, especially her sister ship the Peter Pomegranate. All of the excavation records and the underwater archaeological survey by the Direct Survey Method need to be processed so as to compile drawings of the ship as found, with all objects in her plotted out. Other matters include sorting out irregularities in the plane of symmetry, and undertaking more tree-ring dating to determine how the ship was modified. All of this would make it possible to carry out a stability assessment of the ship. Many details of the structure of the Mary Rose need further study, such as her changing keel sections, her varied caulking, the possible traces of ‘white stuff’ coating on her underwater body, and the drawing and reconstruction of the partitions that define her compartments. Doorways in partitions may be identified, and the positions of companionways determined. The corroded iron fittings on the gunport lids require investigation and recording so as to show how they were opened and closed, and iron fittings for gun tackle on the Main and Upper decks need recording. Also, the cabins on the Main deck need recording, particularly the Barber-surgeon’s cabin and the Pilot’s cabin. More information on the propulsion of the ship may be derived from the positioning of the possible ‘mast partners’, and the rigging can be much better reconstructed from the rope sizes as reflected by the wooden fittings, and by the edging of the surviving but mostly decayed sail. Constructing a working model of the entire means of propulsion, the rigging, masts, yards and sails, would help define how they were used. Finally, the remaining timbers of the collapsed bow need excavation, lifting and recording.

Appendix 1, Some background considerations in the construction and geometry of the hull by Richard Barker, examines various issues concerning the quality of the evidence from the survival of the ship. These involve the present form of the hull, the plane of symmetry, distortion, and exactly where the sections recorded in 1982–5 were situated and whether or not they were at right angles to the plane of symmetry. He considers evidence for the position of the master frame that defined the shape of the hull amidships, and considers evidence for how the ship was launched and rebuilt.

Appendix 2, Caulking materials used in the Mary Rose by Penelope Walton Rogers and Allan Hall, shows that a range of caulking materials was used in the ship, including cattle and goat hair, and flax, with possibly lime, was used to make oakum. There was also some caulking of mixed plant and wool, and some wood tar.
Preface

The English warship Mary Rose was sunk in the Solent, between Portsmouth and the Isle of Wight, during a naval battle against a French fleet on 19 July 1545. Over 400 men died in her. Her wreck was discovered in 1971 by a team of divers led by Alexander McKee, and was subsequently excavated as an archaeological site by a team led by Margaret Rule. A major part of the ship's starboard side and parts of four decks had survived buried in the sea-bed, together with a considerable amount of the ship's contents, including the remains of many of her crew. The ship's structure was raised in 1982, and subsequently underwent preservation in Portsmouth Dockyard where a Mary Rose museum was created.

Since then the Mary Rose Trust has carried out a huge amount of archaeological recording and research to find out what the ship was like and how she was used. Much more study is needed, but the interim results are being published in four volumes of which this is Volume 2, with a fifth dedicated to describing the conservation processes. Volume 1 describes the sixteenth century history of the ship, the discovery of the wreck in the nineteenth century, its rediscovery in 1971, and its subsequent excavation and recovery (Sealed by Time: the loss and recovery of the Mary Rose). Volume 2 describes the ship; Volume 3 describes the weapons (Weapons of Warre: the armaments of the Mary Rose); and Volume 4 describes the rest of the objects that were found, including artefacts, human remains, animal bones, and environmental samples (Before the Mast: life and death aboard the Mary Rose). Throughout the text that follows these volumes are referred to in a simplified manner by the abbreviation AMR (eg, AMR Vol. 1, xx–xx).

The precise aim of this second volume is to describe as much of the remains of the ship as possible, and to use this as the basis for reconstructing the vessel as she was in 1545. Fortunately, there are also valuable clues to suggest what the ship may have been like when first built in 1511.

When this interim programme of publication was planned the ‘brief’ from the Mary Rose Trust and the Heritage Lottery Fund, that financed the work, was to publish only existing research. However, it soon emerged that not enough archaeological work had been completed to make this possible because the Mary Rose Trust had, rightly, made as its priority the cataloguing and conservation of the ship's structure and the finds. Most important was that there were no overall drawings of the entire ship as found or as she was in the museum. Consequently, it was necessary to undertake much more research, to continue the excellent work on the ship that had already been carried out under the leadership of Andrew Fielding to a point when publication was possible. The Trust's archive is ideally constructed for curatorial purposes, but its ordering and indexing for archaeological research is limited, so finding data occupied a significant amount of time. The research upon which parts of this volume are based is, therefore, often incomplete. Difficult decisions had to be made as to what aspects should be studied, and what left out. This was far from ideal, but the result reflects what could be achieved with the limited time and funding.

In spite of these restrictions those involved have all taken their restricted ‘brief’ far beyond what was agreed, and the patience and support of both the Mary Rose Trust and the Heritage Lottery Fund has been much appreciated. Many aspects could not be started, such as, for example, it was not possible within the constraints of time and funding to construct a plan of the ship ‘as found’ on the sea-bed. The main method of survey underwater was the Direct Survey Method of three-dimensional recording of structures and objects, but this had not been processed by computer. This would be a huge task, first computerising and then dealing with thousands of measurements to prepare sets of drawings of the ship and her contents as found. Fortunately, other excavation records define what lay in each sector of the ship, and it is upon these that reliance has been given. This back-up system reflects the excellent quality of the archaeological work by the team that was led by Margaret Rule, for it worked to standards and systems that were far ahead of what was normal on underwater sites in the 1970s and 1980s.

Although a great deal of the ship has now been recorded, there is a considerable amount of structure that still lies in tanks of water and awaits study. Consequently, the conclusions given here will no doubt be modified in the future. Amongst the unrecorded structures are the forward end of the surviving hull and decks and most of the internal partitions and cabins. Moreover, some broken ship’s structure, particularly parts of the Forecastle, still lie buried in the sea-bed, though the stempost was recovered in a recent excavation (during the preparation of this volume) and has enabled the shape of the bow to be estimated.

There are also some other partly recorded structural elements that require much closer study. These include the ‘blinds’ from the ship’s waist, which need to be checked before they are conserved as they might retain traces of decorative painting; and also the ‘top rail’ that formed the uppermost part of the ship’s side in the waist. Other fittings of the ship that require study include a folded sail found in a store, ropes and rigging fittings, and the ‘decorative panels’ that also might still have traces of decorative paint.

After the ship was raised, a huge effort was made to record her in the museum though this was incomplete. It is a credit to Andrew Fielding and his colleagues that so much was drawn, and that a remarkable photographic record of the ship was made under the direction of
Christopher Dobbs. Andrew Fielding compiled plans of the surviving structure of decks, and drew a series of profiles across the hull, as well as organised the drawing of significant timbers, including the keel which was then partly accessible. Stuart Vine wrote valuable descriptions of parts of the ship, and Debbie Fulford drew isometric views of the remains of the ship that magnificently reflect its structure.

In spite of all of this effort, no set of master drawings of the entire remains of the vessel in the museum were prepared upon which it was possible to base a reconstruction. The reason was largely because access to the ship for recording was restricted by the conservation process which had to take priority. Access was limited to short periods each day when the sprays of PEG (polyethylene-glycol) solution could be turned off, but even then the environment in which the archaeological team took measurements and prepared drawings was very cold and wet, since the liquid sprayed onto the hull was chilled. Moreover, the ship was poorly illuminated because of the need to restrict biological growth, and the wet and black timbers made it necessary to use torches to see construction detail, whilst iron fittings had to be interpreted although partly obscured by the concretion that mostly still remains.

Fortunately new technologies for recording became available after the 1980s and in 2000 Julie Gardiner (Series Editor) arranged with Leica UK, as a test-run for new laser survey equipment, for the vessel to be 3-dimensionally scanned by laser onto a computer. Instead of weeks of work, the scan occurred on just one day, and from this it was possible to print out many vertical and horizontal views of the ship’s structure to any scale and in very fine detail. Douglas McElvogue, at the Mary Rose Trust, then used these large-scale printed plans and sections as the basis for an accurate series of construction drawings of the remains of the ship in plans, sections and elevations. It required numerous visits to the ship by him to check structural details, and, again, these visits had the same restrictions as were encountered before, and had to be fitted into only an hour or so between sprayings of water and chemicals. The result, a detailed drawn record of the ship as she is in the museum, is not quite of the vessel as she was in the sea-bed, since some original timbers had not yet been replaced and others that were found dislodged after her sinking had been repositioned. It was well worth the effort, though it took a long time and required much patience. But once completed it was possible to embark on the process of preparing a written description of the remains of the ship, and of developing reconstruction drawings of what she probably looked like, even though there were still many parts of the ship’s structure to be recorded. Where there are omissions in this volume, therefore, the reader should interpret it that the work has yet to be carried out or completed.

The basic layout of the ship is as shown in the Figure below, and in order to locate parts of the ship during the excavation, the interior of the vessel is divided into Sectors, roughly cubic blocks of volume between the riders in the hold and between the major deck beams. The horizontal distance between the beams is about 3m. For example, Sector M6 is the area between deck beams M6 and M7 above the Main deck.

The deck beams are similarly named, with the beam lying at the forward end of its sector. For example, deck beam O6 on the Orlop deck lies at the forward end of sector O6. This might, at first, seem confusing, but it is a modified version of the system used in the Mary Rose Trust’s archives and so retaining it will facilitate access to the archives. To avoid confusion in this volume each number is preceded by the words ‘Sector’ or ‘Deck beam’. It is interesting to find, after the ship was raised, that the same numbers were used in Tudor times for they had been carved into some of the deck supports.

This interim publication seeks to identify the ‘big picture’ of what the Mary Rose was like and how she was used. Although much detail has been described, much more has been left for future research by others, and towards that end the Mary Rose Trust welcomes expert help in studying the ship. That need for help also extends to specialists who will complete the pioneering work of David Loades and Charles Knighton to transcribe and publish all historical records that relate to the Mary Rose and to her sister ship the Peter Pomegranate, since that is where the ship’s story mostly lies.

That story is of a warship, launched in 1511, that was designed for anti-personnel fighting at sea with small guns, bows and arrows, pikes and other hand weapons. Subsequently, in the 1530s, she was drastically modified and updated to house more guns, some of which were heavy anti-ship weapons. Mistakes were made, and therein lay a cause of her loss in the battle of 1545, her first engagement since being ‘modernised’.

Even when she was first built in 1509–11 the Mary Rose was a ‘modern’ warship for that earlier time, and she incorporated important advances in naval architecture. Her hull shape was precisely defined, suggesting that she may have been designed on a drawing board. Her means of propulsion, many sails on four masts, was still a fairly new concept that required considerable steering expertise. And her outboard planking was carvel laid edge-to-edge, whereas only twenty years earlier it was normal for large ships to be clinker built with overlapping planks.

These developments in naval architecture were presumably partly a response to the recent discoveries during pioneering ocean voyages that had revealed the sea route to Asia and discovered the American continent. Until 1500 Europe was ‘the world’ to most local people, and most ships sailed in coastal waters where the traditional method of navigation was to recognise environmental clues. But now a new and larger class of ship was needed for long ocean voyages, so that they could carry large quantities of provisions and heavy armaments. But to do so required the use of more advanced navigation instruments to fix the position of ships far from the coast. The Mary Rose was
Above: the basic layout of the ship, with decks and cabins named, and sectors indicated
Below: Trench plan and nomenclature adopted in 1979
not used for such distant voyages, but she was required to be as modern and well equipped as possible so as to confront the new generation of warships with their more up-to-date firepower, and, of course, to reflect the status and power of King Henry VIII.

This volume has 22 chapters, with 2 Appendices, a Glossary of terms, and a Bibliography. They are written so as to trace the story of the ship in a logical fashion, commencing with a discussion of the place of the Mary Rose in the development of warships (Chapter 1). The next chapter (Chapter 2) describes the recovery and recording of the ship. Then the method by which the ship has been reconstructed is described (Chapter 3). Next, the evidence for how the ship seems to have been designed and built is discussed (Chapter 4). There then follows a study of how the timbers were fashioned (Chapter 5).

The next eight chapters (Chaps 6–13) describe parts of the ship as she was in 1545, and show how each part has been reconstructed. And the following five chapters (Chaps 14–18) describe how the ship was used, the greater length of Chapter 17 being due to the importance of the vessel’s primary function as a warship.

The final four chapters (Chaps 19–22) examine the evidence for how the ship was altered during her use, and how she might be reconstructed as a whole, and suggests why she sank. They also point out areas of future research that would contribute to a greater understanding of the vessel.

There are two Appendices that include details that are best separated from the main theme of the book, but are equally important. Appendix 1 develops themes relating to the design of the ship found in Chapter 4. Appendix 2 analyses the caulking.

Finally, there are a Glossary and a Bibliography, the former containing many of the technical terms used, as often standardised in the Mary Rose Trust archives, some of which might not be quite logical (eg. ‘Forecastle’ and ‘Sterncastle’). During the sixteenth century the names of the decks were different from those used today, but throughout the volume the names that were used during the excavation and subsequently have been retained (ie. Hold, and Orlop, Main, Upper and Lower and Upper Sterncastle and Forecastle decks). The masts, in contrast, mostly have the names that were used during the sixteenth century (ie. from bow to stern: bowsprit, fore mast, main mast, mizzen mast, bonaventure mast).

Although the priority of this publication has been to describe as much as possible of what was found of the ship, contributors have stressed varying interpretations of how the ship was built and should be reconstructed. They were first aired at two seminars held by the Mary Rose Trust. One seminar was on reconstructing the ship and the other was on her use in battle. Rather than present a consensus view, this volume Editor decided that, as so many uncertainties exist, these varying views should be allowed to stand so as to reflect the importance of debate, and to help give direction to any future research programme.

It is important not to view this volume as anything other than an interim statement about the Mary Rose. It shows the state of knowledge now, and does not replace a more final publication in the future that would follow on from a comprehensive new survey of the vessel once the conservation process is completed and all parts of the ship have been recorded.

That comprehensive study has been made possible because the principle of research used on much smaller vessels, that it is necessary to raise the entire boat for recording and study, has been applied to this large ship. Because she was raised and preserved the Mary Rose has given scholars an unprecedented opportunity to carry forward research into a crucial stage of the development of ships that would otherwise have not been possible had she been recorded only on the seabed. It is thanks to the vision of Alexander McKee and Margaret Rule, and the extraordinary efforts of numerous others, that this goal was achieved.